

Thank you!

Cathenine Wiist @ Abc|23is4me
http://www.teacherspayteachers.com/Store/Abc 123is4me (All new products are discounted for the finst 48 hours! Follow my page to see when new products are posted!)
 httios://www.facebook.com/Abc 123isfonme
(Follow me here for Flash Freebies!!!)
http://abc 123is4me.blogspot.com/
(Follow me here to see how I use my products in my classroom!)

Credits:

Graphics From the Pond http://frompond.blogspot.com

\qquad
\qquad
\qquad
\qquad
Grade 3

Everyday Math: Operations

Unit Vocabulary:

adding a group, area. close-but-easier numbers, column addition. counting up. equivalent, estimate. expand-and-trade subtraction. expanded form. expression. factors. facts table. function machine. helper fact. input. key. Multiplication/Division Facts Table, multiplication squares, name-collection box. open number line, output. partial-sums addition. partition. picture graph. precisely. reasonable. rubric. rule. scaled bar graph. scaled picture graph, square product. square units. subtracting a group. tile. turn-around rule. "What's My Rule?"

Lesson 3.I:

How do you find missing numbers and rules in "What's My Rule?" tables?

Lesson 3.2:

How do you use mental math to make reasonable estimates?
Use rounding to estimate and then solve. Then, use your estimates to check if your answers make sense. Show your work.

1. Estimate: \qquad

$$
174
$$

$$
\begin{array}{r}
+\quad 37 \\
\hline
\end{array}
$$

Does your answer make sense? Explain below.
2. Estimate: \qquad

$$
\begin{array}{r}
282 \\
-\quad 75 \\
\hline
\end{array}
$$

Does your answer make sense? Explain below.

Lesson 3.3:

How do you use the partial-sums addition algorithm to add 2-digit and 3-digit numbers?
Solve both addition problems using partial sums. Use your estimates to make sure your answers make sense.

1. Estimate: \qquad

237
$+\quad 91$

2. Estimate:

$$
277
$$

$$
+304
$$

Lesson 3.4:

How do you use the column addition algorithm to find sums?
Solve using column addition. Use your estimate to make sure your answer makes sense.

Estimate: \qquad
$98+36=$ \qquad

Lesson 3.5:

How do you solve subtraction problems using the counting-up strategy?
Solve the problem. Use an open number line or a number sentence to show your work. Use your estimate to check your work.
$742-537=$?
Estimate: \qquad
742-537 = \qquad

Lesson 3.6:

How do you use the expand-and-trade subtraction algorithm to subtract 2 - and 3 - digit numbers?
The expand-and-trade subtraction algorithm was used to find the exact answer; however, the exact answer doesn't match up with the estimate! Explain why.
$116-37=?$

Estimate:	$120-40=80$
	100
116	$100+Q Q+Q^{16}$
- 37	$30+7$
	$100+70+9$

Explain: \qquad

Lesson 3.7:
Exploration A: How do you create a scaled bar graph?
Favorite Ice Cream Flavors of $3^{\text {rd }}$ Graders

Chocolate	Vanilla	Strawberry	Other
55	45	20	35

Use the chart to fill in the scale of the bar graph.

Favorite Ice Cream Flavors of $3^{\text {rd }}$ Graders

Exploration B: How do you measure area?
Fill in the blanks:
The amount of surface inside a 2 -dimensional shape is called the \qquad
The number of squares that cover the surface is a measurement of the area in

Exploration C: How do you partition rectangles into equal parts to find the area?
Partition the rectangle into 2 rows with 3 same sized squares in each row.

Lesson 3.8:

How do you create a scaled picture graph?
Use the tally chart and the key to complete the picture graph.
Ways $3^{\text {rd }}$ Graders Get to School

Ways to School	Number of Children					
Car	\|H	W	W	W	W	\mid
Bus						
Walk	\|	W	W			

Key $\square=5$ children

Lesson 3.9:

How do you find the products of multiplication squares?
Write a number sentence to match the array.

Number sentence: \qquad
Does the problem show a multiplication square? \qquad Why or why not?

Lesson 3.10:

How does knowing one multiplication fact help with knowing its turn-around fact?

1. Use the turn-around rule to solve and draw arrays for each fact.
$4 \times 7=$ \qquad $7 \times 4=$ \qquad True or False?
The number of dots are the same in each array. So, the array just turned but the product is the same.

Lesson 3.II:

How does the adding-a-group strategy help to solve unknown multiplication facts?
Fred does not know the answer to 3×7.
He does know that $2 \times 7=14$, so he uses it as a helper fact.
Fred starts by drawing this array for $2 \times 7=14$.
$\circ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\circ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 口$

Show on the array and explain how Fred can use the array to help him figure out 3×7.

Lesson 3.12:

How do you use the subtracting-a-group strategy to help solve unknown multiplication facts?
Tina uses the subtracting-a-group strategy with 10×4 to help her figure out 8×4.
Use numbers, pictures, or words to explain what Tina did.
$8 \times 4=$ \qquad
Lesson 3.13: (cc.2.1.3.B.|, cc.2.2.3.А.3)
How do you generate equivalent names for numbers using all four operations?
Two of the names do not belong in this box. Cross them out. Then write the name of the box on the tag.

\qquad
\qquad
Grade 3

Everyday Math: Operations

Unit Vocabulary:

adding a group, area, close-but-easier numbers, column addition, counting up. equivalent, estimate, expand-and-trade subtraction, expanded form, expression, factors. facts table. function machine. helper fact. input. key. Multiplication/Division Facts Table, multiplication squares, name-collection box. open number line, output. partial-sums addition. partition, picture graph, precisely, reasonable, rubric, rule. scaled bar graph, scaled picture graph, square product. square units, subtracting a group, tile, turn-around rule, "What's My Rule?"

Lesson 3.l:

How do you find missing numbers and rules in "What's My Rule?" tables?

in	out
7	14
0	7
2	0
16	23
28	35
answerp will vary	

in	in	out
Rule	10	2
Subtract 8	12	4
そ,	20	12
out	60	52
	45	37
	answer	will vary

Lesson 3.2:

How do you use mental math to make reasonable estimates?
Use rounding to estimate and then solve. Then, use your estimates to check if your answers make sense. Show your work.

1. Estimate: Sample answer: $170+40=210$

$$
\begin{array}{r}
174 \\
+\quad 37 \\
\hline 2 \|
\end{array}
$$

Does your answer make sense? Explain below.
sampie answer: yes, because my estimate is $170+40=210$, WhiCh is Close +0 211 .
2. Estimate: Sample answer: $280-75=205$

$$
\begin{array}{r}
282 \\
-\quad 75 \\
\hline 207
\end{array}
$$

Does your answer make sense? Explain below.
sample answer: yes, because my estimate is $280-75=205$, WhiCh is close to 207.

Lesson 3.3:

How do you use the partial-sums addition algorithm to add 2-digit and 3-digit numbers?
Solve both addition problems using partial sums. Use your estimates to make sure your answers make sense.

sample answers:

1. Estimate: $240+90=330$

237
$+\quad 91$
200
$+\quad 120$
828

2. Estimate: $280+305=585$

277
+304
500
$+\quad 70$
588

Lesson 3.4:

How do you use the column addition algorithm to find sums?
Solve using column addition. Use your estimate to make sure your answer makes sense.

Estimate: sample answer: $100+35=135$
$98+36=\ldots 134$

Lesson 3.5:

How do you solve subtraction problems using the counting-up strategy?
Solve the problem. Use an open number line or a number sentence to show your work. Use your estimate to check your work.
$742-537=?$
Estimate: Sample answer: 740-540 $=200$
$742-537=\underline{205}$

Lesson 3.6:

How do you use the expand-and-trade subtraction algorithm to subtract 2 - and 3 - digit numbers?
The expand-and-trade subtraction algorithm was used to find the exact answer; however, the exact answer doesn't match up with the estimate! Explain why.
$116-37=?$
Estimate: $\frac{120-40=80}{100}$
Explain: Sample answer: The kid needed to
cross off 100 and write 0 because she/he
took away a hundred and put it in the
tens spot to Change o to loo.

Lesson 3.7:
Exploration A: How do you create a scaled bar graph?
Favorite Ice Cream Flavors of $3^{\text {rd }}$ Graders

Chocolate	Vanilla	Strawberry	Other
55	45	20	35

Use the chart to fill in the scale of the bar graph.

Exploration B: How do you measure area?
Fill in the blanks:
The amount of surface inside a 2-dimensional shape is called the Orea
The number of squares that cover the surface is a measurement of the area in square units

Exploration C: How do you partition rectangles into equal parts to find the area?
Partition the rectangle into 2 rows with 3 same sized squares in each row.

Lesson 3.8:

How do you create a scaled picture graph?
Use the tally chart and the key to complete the picture graph.
Ways $3^{\text {rd }}$ Graders Get to School

Ways to School	Number of Children						
Car	\|H	W	W		W	K	
Bus							
Walk	\|	W	W				

Key $\square=5$ children

Lesson 3.9:

How do you find the products of multiplication squares?
Write a number sentence to match the array.

Number sentence: $4 \times 3=12$
Does the problem show a multiplication square? NO Why or why not? The two factors are not the same.

Lesson 3.10:

How does knowing one multiplication fact help with knowing its turn-around fact?

1. Use the turn-around rule to solve and draw arrays for each fact.

$$
7 \times 4=\underline{28}
$$

true
True or False?
The number of dots are the same in each array. So, the array just turned but the product is the same.

Lesson 3.II:

How does the adding-a-group strategy help to solve unknown multiplication facts?
Fred does not know the answer to 3×7.
He does know that $2 \times 7=14$, so he uses it as a helper fact.
Fred starts by drawing this array for $2 \times 7=14$.

Show on the array and explain how Fred can use the array to help him figure out 3×7. sample answer: He drew an array for 2×7 and knew it waS 14. To figure out 3×7, he can add one more
row of 7 dots. $14+7=21$.

Lesson 3.12:

How do you use the subtracting-a-group strategy to help solve unknown multiplication facts?
Tina uses the subtracting-a-group strategy with 10×4 to help her figure out 8×4. Use numbers, pictures, or words to explain what Tina did.
sampie answers:
$8 \times 4=\underline{32}$

> Since 8 groups of 4 is
> two fewer than 10 groups of 4 , Tina can start from 40 and take away 2 groups of 4. $40-8=32$.

Lesson 3.13:

How do you generate equivalent names for numbers using all four operations?
Two of the names do not belong in this box. Cross them out. Then write the name of the box on the tag.

