Thank you!

Catherine Wiist @ Abc123is4me
http://www.teacherspayteachers.com/Store/Abc123is4me
(All new products are discounted for the first 48 hours! Follow my page to see when new products are posted!)
https://www.facebook.com/Abc123isforme
(Follow me here for Flash Freebies!!!)
http://abc123is4me.blogspot.com/
(Follow me here to see how I use my products in my classroom!)

Credits:

ALL FONTS
hello fonts
by Jen Jones
COMMERCIAL USE LICENSE

EduClips
www.edu-clips.com

graphics from the pond

KG Fonts
Lifetime Licensed
Grade 3
Everyday Math: Unit
Multidigit Operations
Study Guide

Unit Vocabulary:
basic fact, break-apart strategy, decompose, doubling, efficient, elapsed time, extended fact, extended multiplication fact, length of day, multiplication/division diagram, partition
Lesson 9.1:
How do you apply your basic fact knowledge to help you make comparisons between products?
For each number sentence, fill in the blank with a factor from 1 to 10 to make it true.

 a. $4 \times 6 < 6 \times _____$
 b. $5 \times 4 > 5 \times _____$
 c. $9 \times 7 < _____ \times _____$

Lesson 9.2:
What strategies are applied to solve number stories when the problems involve multiples of 10?
For problems 1-2, write a number model with a letter for the unknown. Then solve the problem and write the answer. Write your number model again with the answer to check that your answer makes sense.

1. Eight eggs each have a mass of about 70 grams.
 What is their total mass?

 (number model with letter)

 The letter _____ stands for _________________________________.

 (number model with answer)

Eight eggs have a total mass of about ____________ grams.
Lesson 9.2: Continued

2. About how many 50-gram boxes have a mass equal to one 600-gram box?

(number model with letter)

The letter ______ stands for ________________________________.

It would take about ___________ 50-gram boxes to equal the mass of one 600-gram box.

(number model with answer)
Lesson 9.3:
How do you solve problems involving larger factors using mental strategies?

Write a number model with a letter for the unknown. Then solve the problem and write the answer. Write your number model again with the answer to check that your answer makes sense.

Together, 70 rocks have a mass of about 120 kilograms. One cement block has a mass of about 12 kilograms. About how many 12-kilogram cement blocks would it take to equal the mass of the rocks?

(number model with letter)

The letter _______ stands for ___.

It would take about ____________ cement blocks to equal the mass of 70 rocks.

(number model with answer)
Lesson 9.4:

Exploration A: How do you solve problems involving elapsed time?

Maria wants to know how long each Fun Day activity lasts. Use the table below to find the length of each activity. You may use open number lines, clocks, or another strategy.

<table>
<thead>
<tr>
<th>Fun Day Activities</th>
<th>Schedule</th>
<th>Length, in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Races</td>
<td>9:10 A.M.- 10:10 A.M.</td>
<td></td>
</tr>
<tr>
<td>Snack</td>
<td>10:10 A.M.- 10:35 A.M.</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>10:35 A.M.- 11:50 A.M.</td>
<td></td>
</tr>
</tbody>
</table>

Exploration B: How do you use your understanding of polygons to reassemble a deconstructed shape?

Were you able to put back together the square using all of your pieces? __________

Can you make the larger square by cutting the squares into smaller squares? __________

Exploration C: How does the construction of an object affect the amount of mass it is able to support?

Rank, from strongest to weakest, the three bridges you made.

_________ Bridge One _________ Bridge Two _________ Bridge Three ___________

Do squares or triangles make stronger bridges? __________________________
Lesson 9.5:
How do you solve multi-digit multiplication problems?

Use the break-apart strategy to solve the problem. You may use mental math, drawings, number sentences, or words. Show your thinking.

a. 3 \times 52 = _______

b. Adalyn drew a rectangle to help solve 6 \times 42. Here is her work:

\[
\begin{array}{c}
6 \\
\hline
40 & 42 \\
\hline
6 \times 40 = 240 & 6 \times 2 = 12 \\
\hline
240 & + 12 \\
\hline
252
\end{array}
\]

Explain how Adalyn solved the problem.
Lesson 9.6: How do you apply your number sense to develop strategies for using a calculator with a broken key?

My teacher is planning to buy doughnut holes as a treat for the class. He will need 120 doughnut holes for the class. Doughnut holes come in boxes of 24. He must find out how many boxes to buy. I want to use my calculator to help him, but the + and ÷ keys are both broken. Help me find a way to use my broken calculator to help me solve the problem.

1. Show or tell how to use the broken calculator to find the number of boxes of doughnut holes the teacher needs to buy.

2. Show or tell another way to use the broken calculator to solve the problem.
Lesson 9.7:
How do you analyze data in a graph?

It starts snowing at 1:35 P.M. and stops at 4:10 P.M.
How long did it snow?
Show your thinking. You may use an open number line, your toolkit clock, or other representations.

_______ hours _______ minutes
Grade 3

Everyday Math: Unit

Multidigit Operations

Study Guide

Unit Vocabulary:
basic fact, break-apart strategy, decompose, doubling, efficient, elapsed time, extended fact, extended multiplication fact, length of day, multiplication/division diagram, partition
Lesson 9.1:
How do you apply your basic fact knowledge to help you make comparisons between products?

For each number sentence, fill in the blank with a factor from 1 to 10 to make it true.

a. $4 \times 6 < 6 \times __7$

b. $5 \times 4 > 5 \times _3$

c. $9 \times 7 < 10 \times 10$

Sample answers:

Lesson 9.2:
What strategies are applied to solve number stories when the problems involve multiples of 10?

For problems 1-2, write a number model with a letter for the unknown. Then solve the problem and write the answer. Write your number model again with the answer to check that your answer makes sense.

1. Eight eggs each have a mass of about 70 grams.
 What is their total mass?

 $8 \times 70 = M$

 (number model with letter)

 The letter M stands for the mass of 8 eggs.

 Eight eggs have a total mass of about ____560____ grams.

 $8 \times 70 = 560$

 (number model with answer)
2. About how many 50-gram boxes have a mass equal to one 600-gram box?

\[
\frac{50 \times B}{B} = 600 \quad \text{or} \quad 600 \div 50 = B
\]

(number model with letter)

The letter \(B \) stands for the number of boxes.

It would take about \(12 \) 50-gram boxes to equal the mass of one 600-gram box.

\[
50 \times 12 = 600 \quad \text{or} \quad 600 \div 50 = 12
\]

(number model with answer)
Lesson 9.3:
How do you solve problems involving larger factors using mental strategies?

Write a number model with a letter for the unknown. Then solve the problem and write the answer. Write your number model again with the answer to check that your answer makes sense.

Together, 70 rocks have a mass of about 120 kilograms. One cement block has a mass of about 12 kilograms. About how many 12-kilogram cement blocks would it take to equal the mass of the rocks?

\[C \times 12 = 120 \quad \text{or} \quad 120 \div 12 = C \]

(number model with letter)

The letter \(C \) stands for the number of cement blocks.

It would take about ______ 10 ______ cement blocks to equal the mass of 70 rocks.

\[10 \times 12 = 120 \quad \text{or} \quad 120 \div 12 = 10 \]

(number model with answer)
Lesson 9.4:

Exploration A: How do you solve problems involving elapsed time?

Maria wants to know how long each Fun Day activity lasts. Use the table below to find the length of each activity. You may use open number lines, clocks, or another strategy.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Schedule</th>
<th>Length, in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Races</td>
<td>9:10 A.M.- 10:10 A.M.</td>
<td>60</td>
</tr>
<tr>
<td>Snack</td>
<td>10:10 A.M.- 10:35 A.M.</td>
<td>25</td>
</tr>
<tr>
<td>Art</td>
<td>10:35 A.M.- 11:50 A.M.</td>
<td>75</td>
</tr>
</tbody>
</table>

Exploration B: How do you use your understanding of polygons to reassemble a deconstructed shape?

Were you able to put back together the square using all of your pieces? **Yes or No**

Can you make the larger square by cutting the squares into smaller squares? **No**

Exploration C: How does the construction of an object affect the amount of mass it is able to support?

Rank, from strongest to weakest, the three bridges you made.

#3 Bridge One
#2 Bridge Two
#1 Bridge Three

Do squares or triangles make stronger bridges? **triangles**
Lesson 9.5:
How do you solve multi-digit multiplication problems?

Use the break-apart strategy to solve the problem. You may use mental math, drawings, number sentences, or words. Show your thinking.

a. 3 \times 52 = \underline{156}
 \begin{align*}
 &3 \times 50 = 150 \\
 &3 \times 2 = 6 \\
 &150 + 6 = \underline{156}
 \end{align*}

b. Adalyn drew a rectangle to help solve 6 \times 42. Here is her work:

 \begin{align*}
 &6 \times 40 = 240 \\
 &6 \times 2 = 12 \\
 &240 + 12 = \underline{252}
 \end{align*}

 Explain how Adalyn solved the problem.
 She broke 42 into 40 and 2. Then she multiplied 6 \times 40 and 6 \times 2. She added the two products together to get 252, so 6 \times 42 = 252.
Lesson 9.6:
How do you apply your number sense to develop strategies for using a calculator with a broken key?

My teacher is planning to buy doughnut holes as a treat for the class. He will need 120 doughnut holes for the class. Doughnut holes come in boxes of 24. He must find out how many boxes to buy. I want to use my calculator to help him, but the + and ÷ keys are both broken. Help me find a way to use my broken calculator to help me solve the problem.

1. Show or tell how to use the broken calculator to find the number of boxes of doughnut holes the teacher needs to buy.

Sample answer: I knew the number of cartons needs to be less than 10 because 10 × 24 = 240. I knew that half of 24 is 12, so half of 240 would be 120. So, I tried 5 × 24 on my calculator and got 120. The teacher needs 5 boxes of doughnut holes.

2. Show or tell another way to use the broken calculator to solve the problem.

Sample answer: 1, 2, 0, - 2, 4, =, =, =, =, =; I had to push the equal key 5 times to reach 0, so the number of boxes are 5.
Lesson 9.7:
How do you analyze data in a graph?

It starts snowing at 1:35 P.M. and stops at 4:10 P.M.
How long did it snow?
Show your thinking. You may use an open number line, your toolkit clock, or other representations.

Strategies vary.

2___ hours 35___ minutes