

Everyday Math:

Fractions \& Multiplication Strategies

Study

 Guide
Thank you!

Cathenine Wiist @ Abc|23is4me
http://www.teacherspayteachers.com/Store/Abc 123is4me (All new products are discounted for the finst 48 hours! Follow my page to see when new products are posted!)
 httios://www.facebook.com/Abc 123isfonme
(Follow me here for Flash Freebies!!!)
http://abc 123is4me.blogspot.com/
(Follow me here to see how I use my products in my classroom!)

Credits:

Graphics From the Pond http://frompond.blogspot.com

\qquad
\qquad $-$

Grade 3

Everyday Math:

Study Guide

Unit Vocabulary:
add a group, break-apart strategy, decompose, denominator. doubling. equal parts, equivalent fractions, even, factor. fraction. helper facts, missing factor, multiples, near squares, numerator. odd. product. subtract a group. unit fraction, whole

Lesson 5.l:

Exploration A: How do you create equal parts of different wholes?
Circle the picture that shows 1-thirds of the whole.

A.

B.

Exploration B: How do you solve problems involving area and perimeter? Circle the pentominoe that has a different perimeter measurement than the other two.
A.

B.

C.

Exploration C: How do you represent fractions of different wholes?
A. The square is the whole.

A fraction that names the shaded part is \qquad .
B. The rectangle is the whole.

A fraction that names the shaded part is \qquad .

Lesson 5.2:

How do you represent fractions using standard notation, words, and drawings? Complete the table.

Picture	Words	Number

Lesson 5.3:

How can you recognize equivalent fractions?
\# 1: Divide the rectangle into 4 equal-size parts. Shade and label one part with a fraction.

\#2: Diego turns over these two cards during a game of Fraction Memory. He thinks he found a pair of equivalent fractions.

a. Do you agree? Explain your thinking.
b. Use your fraction cards to find a different pair of equivalent fractions. Record your fractions on the lines below.

Lesson 5.4:

How do you apply your knowledge of helper facts to solve harder multiplication facts?
\#1: For the helper fact below:

* Record a helper fact.
* Use your helper fact and either add or subtract a group.
* Use words, numbers, or pictures to show your thinking.
* Write the product.
$9 \times 8=$?
Helper Fact: \qquad X \qquad $=$

How can I use the helper fact: \qquad
$9 \times 8=$ \qquad
\#2: Lynne and Dan are working together to solve 6×7.

* Lynne says: "I think 6×6 will help as our helper fact."
* Dan says: "I think 7×7 will help as our helper fact."

With whom do you agree? Explain.

Lesson 5.5:

How does using the strategy of doubling help to find the area of a larger rectangle?
Explain two different ways you could use doubling to solve $4 \times 6=$?
You may draw rectangles to help.
a. One way:

Helper fact: \qquad x \qquad $=$ \qquad
How I did it:
\qquad
b. Another way:

Helper fact: \qquad x \qquad $=$

How I did it:
\qquad

Lesson 5.6:

How do you apply the doubling strategy to solve multiplication facts?
Show how you can solve 5×6 using doubling.
Factor I will split in half: \qquad
Sketch:
$5 \times 6=$ \qquad
What helper fact did you double to solve 5×6 ?

Lesson 5.7:

How do you identify and explain arithmetic patterns using properties of operations?
Complete the table of 5 s multiplication facts below.

Fact	Product
1×5	
2×5	
3×5	
4×5	

What patterns did you notice in the products?

How do you identify the missing factor in a multiplication problem?
Mike is playing a round of Salute! The dealer says 32. His partner has a 8 on her forehead.
a. What number does Mike have? \qquad
b. Write a multiplication number sentence and a division number sentence for this problem.
c. How do your number sentences show the same Salute! round?

Lesson 5.9:

How can the product of a multiplication square help you find the product of near squares?
Near square: $6 \times 7=$?
Square helper fact: \qquad x \qquad $=$ \qquad
How does your square helper fact help you solve the near square?
$6 \times 7=$

Lesson 5.10:

How do you solve a number story?
Solve the number story.
People are donating $\$ 10$ each to the animal shelter. The animal shelter has collected $\$ 130$ so far. Its goal is to collect $\$ 200$. How many more people do they need to donate money?

Lesson 5.II:

How do you use the break-apart strategy to solve multiplication problems?
Julio is trying to solve 7×9.
He sketched a rectangle to help him think about how to break apart the numbers so that the fact is easier to solve. Here is his sketch:

Use numbers or words to explain how Julio can use his sketch to solve 7×9

5	4
7	7×5
	7×4

\qquad

\qquad

Grade 3

Everyday Math:

Study Guide

Unit Vocabulary:
add a group, break-apart strategy, decompose, denominator. doubling. equal parts, equivalent fractions, even. factor. fraction. helper facts, missing factor, multiples, near squares, numerator. odd. product. subtract a group. unit fraction, whole

Lesson 5.l:

Exploration A: How do you create equal parts of different wholes? Circle the picture that shows 1-thirds of the whole.

A.

B.

Exploration B: How do you solve problems involving area and perimeter? Circle the pentominoe that has a different perimeter measurement than the other two.
A.)

B.

C.

Exploration C: How do you represent fractions of different wholes?
A. The square is the whole.

A fraction that names the shaded part is \qquad 1-half
B. The rectangle is the whole.

A fraction that names the shaded part is 1 - fourth.

Lesson 5.2:

How do you represent fractions using standard notation, words, and drawings? Complete the table.

Picture		Words	Number
Example:	two-thirds	$\frac{2}{3}$	

Lesson 5.3:
How can you recognize equivalent fractions?
\# 1: Divide the rectangle into 4 equal-size parts. Shade and label one part with a fraction.

\#2: Diego turns over these two cards during a game of Fraction Memory. He thinks he found a pair of equivalent fractions.

a. Do you agree? Explain your thinking.

Yes: Sample Answer: The shaded area of each circle on the cards is the same size.

b. Use your fraction cards to find a different pair of equivalent fractions. Record your fractions on the lines below.
Answers will vary
\qquad

$$
=
$$

\qquad

Lesson 5.4:

How do you apply your knowledge of helper facts to solve harder multiplication facts?
\#1: For the helper fact below:

* Record a helper fact.
* Use your helper fact and either add or subtract a group.
* Use words, numbers, or pictures to show your thinking.
* Write the product.

Sample Answer:

$9 \times 8=$?
Helper Fact: $8 \times 8=64$
How can I use the helper fact: I Know that $8 \times 8=64$, so then I add a group of $8.64+8=72$
$9 \times 8=$ \qquad
\#2: Lynne and Dan are working together to solve 6×7.

* Lynne says: "I think 6×6 will help as our helper fact."
* Dan says: "I think 7×7 will help as our helper fact."

With whom do you agree? Explain. Sample Explanations:
I agree with Lynne because she can add a group of 6 to 6×6 to find 6×7 because of the turn-around rule. I agree with Dan because he can subtract a group of 7 from 7×7 to get the answer to 6×7. I agree with both because 6×7 is a near-squares fact for 6×6 and 7×7, so they can either add or subtract a group to get the answer.

Lesson 5.5:

How does using the strategy of doubling help to find the area of a larger rectangle?
Explain two different ways you could use doubling to solve $4 \times 6=$?
You may draw rectangles to help.
a. One way:

Helper fact: $2 \times 6=12$
How I did it:

$$
\begin{aligned}
& \text { I started with } 2 \times 6=12 \text { and doubled it. } 12+12=24, \\
& \text { so } 4 \times 6=24
\end{aligned}
$$

b. Another way:

Helper fact: $\underline{4} \times 3=12$
How I did it:

$$
\text { I started with } 4 \times 3=12 \text { and doubled it. } 12+12=24,
$$

$$
\text { so } 4 \times 6=24
$$

Lesson 5.6:

How do you apply the doubling strategy to solve multiplication facts?
Show how you can solve 5×6 using doubling.
Factor I will split in half: 6
$5 \times 6=\underline{30}$

$$
\begin{aligned}
& 3 \times 5=15 \\
& 15+15=30
\end{aligned}
$$

Lesson 5.7:

How do you identify and explain arithmetic patterns using properties of operations?
Complete the table of 5 s multiplication facts below.

Fact	Product
1×5	5
2×5	10
3×5	15
4×5	20

What patterns did you notice in the products?
The product goes in an odd, even pattern. The product always ends in a 5 and then a 0 . The product increases by 5 each time.

How do you identify the missing factor in a multiplication problem?

Mike is playing a round of Salute! The dealer says 32. His partner has a 8 on her forehead.

a. What number does Mike have? \qquad
b. Write a multiplication number sentence and a division number sentence for this problem.

$$
8 \times 4=32
$$

$$
32 \div 8=4
$$

c. How do your number sentences show the same Salute! round?

I can think multiplication and ask, "8 times what number is 32?"
I can also think division and ask, "How many groups of 8 are
There in 32?"

Lesson 5.9:

How can the product of a multiplication square help you find the product of near squares?
Near square: $6 \times 7=$?
square helper fact: $6 \times \underline{6}=36$
How does your square helper fact help you solve the near square?
I can start at 36 and add one more group of 6. $36+6=42$.

$$
6 \times 7=42
$$

Lesson 5.10:

How do you solve a number story?
Solve the number story.
People are donating $\$ 10$ each to the animal shelter. The animal shelter has collected $\$ 130$ so far. Its goal is to collect $\$ 200$. How many more people do they need to donate money?

7 people
(unit)

Lesson 5.II:

How do you use the break-apart strategy to solve multiplication problems?
Julio is trying to solve 7×9.
He sketched a rectangle to help him think about how to break apart the numbers so that the fact is easier to solve. Here is his sketch:

Use numbers or words to explain how Julio can use his sketch to solve 7×9

5	4
7×5	7×4

Julio's rectangle is in two pieces. The first rectangle shows
$7 \times 5=35$. The second rectangle shows $7 \times 4=28$. So the total is $35+28=63$.
$7 \times 9=$ \qquad

